
COM3014

Advanced Challenges in Web Technologies

Group UG-3

Vendur
Cloud-Native Retail Platform

Team Members

Aran Jannson

Alexander Kyriacou

Thomas Rouse

William Bang

Noah Esguerra

Ismaeel Anjum

Contents

1 Requirements and Problem Statement 2

1.1 Problem Statement . 2

1.2 Requirements . 4

2 Architecture 6

2.1 Overview . 6

2.2 Microservices . 6

2.3 Database and Backend . 7

2.4 Version Control with Git . 9

2.5 Containerisation with Docker . 10

2.6 Summary of Benefits . 10

3 Teamwork 11

3.1 Team Organisation and Communication . 11

3.2 Work Distribution . 12

3.3 Conflict Management . 12

4 Implementation 14

4.1 Use of Cloud-Native Software Development Processes 14

4.1.1 Microservices . 14

4.1.2 Github . 19

4.1.3 Docker . 21

4.2 Testing . 23

5 Learning from Class and from Good Examples 27

5.1 Class Concepts . 27

5.2 Amazon . 27

5.3 Shopify . 27

5.4 eBay . 28

6 Roadmap and Business Model 29

6.1 Start-up Description . 29

6.2 Project Motivation . 29

6.3 Vision and Future Plans . 29

6.4 Target Market Group (TMG) . 30

6.5 Competitive Analysis . 30

6.6 Key Stakeholders . 31

6.7 Ethical and Legal Considerations . 31

7 Conclusion 32

A Testing Evidence 35

COM3014 Coursework Report Group UG-3 — Vendur

Submission URLs:

Public Git Repository:

• https://github.com/AranJannson/Vendur

Hosted Website:

• https://www.vendur.shop

• https://vendur.shop

Page Routes:

• /auth/signin

• /auth/signup

• /basket

• /basket/checkout

• /basket/checkout/success

• /handler/[...stack]

• /orders

• /organisations

• /organisations/[shop]

• /organisations/create

• /organisations/management

• /organisations/management/[item id]/edit

• /organisations/management/add

• /products

• /products/[item]

• /search

Declaration on AI-Generated Content:

Some of the example items used in the development and testing of the database for this project

were generated using artificial intelligence tools. These items were created for illustrative purposes

only, to simulate realistic data for functional and non-functional testing of system features. No real

user data or commercially sensitive information has been included.

The use of AI-generated examples was conducted ethically and in accordance with the guidelines

of the University of Surrey and relevant academic standards, ensuring that the synthetic data did

not impact the validity or originality of the project outcomes.

1

https://github.com/AranJannson/Vendur
https://www.vendur.shop
https://vendur.shop

COM3014 Coursework Report Group UG-3 — Vendur

1 Requirements and Problem Statement

1.1 Problem Statement

In the increasingly competitive digital commerce landscape, small to medium-sized businesses

(SMBs) face significant challenges in establishing and maintaining a meaningful online retail pres-

ence. Unlike large retail enterprises, these businesses often lack tools that enable them to manage

and optimise an e-commerce platform that can meet ever-evolving customer expectations.

Meanwhile, modern consumers demand smooth and fast online shopping experiences, including

intuitive product browsing and secure checkout and payment. Failure to meet these standards can

often lead to lost sales opportunities and hurts the overall reputation and presence of brands in a

highly saturated market.

This is further amplified by the operational complexity of providing a technically sound and re-

sponsive platform that meets these needs. In order to analyse sales trends and respond to customer

feedback, many smaller organisations are forced to develop sub-par systems, or rely on platforms

such as social media, which are not purpose-built retail solutions. This not only negatively impacts

customer experience, but poses a significant security risk as well.

To approach these challenges, we proposed Vendur; a modular, scalable, and robust retail platform

with cloud-native capabilities, and an emphasis on allowing organisations to manage their business

intuitively and efficiently. The key services we aimed to provide to organisations were:

• List and categorise products with flexible promotion management.

• Securely process online payments through an integrated basket and checkout system.

• Analyse key business metrics through an accessible real-time analytics dashboard.

• Interact with customers efficiently through item reviews.

• Streamline administrative processes such as verification and profile management.

Our solution focuses not only on solving the immediate operational needs of small businesses,

but also on future-proofing their retail operations. Through a modular and scalable microservice

architecture, Vendur will allow organisations to adapt dynamically as their needs grow.

Ultimately, Vendur aims to provide smaller organisations with the tools necessary to compete in

the digital marketplace, foster customer loyalty, and support sustainable business growth.

Below is a summary of our problems, solutions, and motivations behind them.

2

COM3014 Coursework Report Group UG-3 — Vendur

Problem Solution Motivation

Small businesses struggle

to establish an online retail

presence.

Develop an accessible online

retail platform for small to

medium-sized organisations.

Enable smaller organisations to

compete in digital commerce and

improve visibility and customer

engagement.

Consumers expect effort-

less shopping and secure

payments.

Build a platform that sup-

ports product browsing and

secure payment processing.

Meet modern customer expecta-

tions to improve conversion rates

and loyalty.

Organisations face opera-

tional inefficiencies using

fragmented tools and man-

ual processes.

Centralise product listing, or-

der management, analytics,

and customer interaction fea-

tures into one platform.

Increase operational efficiency

and provide a smooth expe-

rience for businesses and cus-

tomers alike.

Existing e-commerce solu-

tions can be costly, rigid,

and hard to customise.

Design a modular,

microservice-based archi-

tecture to allow flexibility,

scalability, and gradual en-

hancements.

Allow businesses to adapt and

grow the system affordably with-

out needing to migrate plat-

forms.

Managing customer feed-

back across multiple plat-

forms is challenging.

Implement structured feed-

back and reply features di-

rectly within the platform.

Improve customer relations and

allow businesses to manage repu-

tations effectively from one dash-

board.

Table 1: Summary of Problems, Solutions, and Motivations for Vendur

3

COM3014 Coursework Report Group UG-3 — Vendur

1.2 Requirements

The functional requirements for the Vendur platform define the core features and operations that

our system had to support to meet user and business needs.

ID Requirement Justification

F1 Product Catalogue Manage-

ment

Organisations must be able to add, update, and

categorise products easily, including setting up

discounts and promotions.

F2 Product Search and Filtering Customers should be able to efficiently search

and filter products based on attributes such as

category, price, popularity, and available dis-

counts.

F3 Secure Payment Processing The platform must securely handle online pay-

ments, manage customer baskets effectively, and

ensure reliable transaction processing.

F4 Analytics Dashboard Organisations will have access to a dashboard

that provides insights into product popularity,

sales trends, seasonal variations, and overall per-

formance metrics.

F5 Organisation Verification and

Management

Administrators need tools for verifying organi-

sations, managing reviews and product listings,

and performing standard CRUD operations for

organisational data.

F6 Customer Interaction and

Feedback

Organisations should have the ability to view

customer reviews to improve customer engage-

ment and build trust.

Table 2: Functional Requirements

4

COM3014 Coursework Report Group UG-3 — Vendur

The non-functional requirements for the platform define the quality attributes that ensure a robust,

scalable, and user-friendly service. These requirements focus on areas such as system performance,

security, usability, and future scalability. Each requirement is justified based on the needs of both

customers and organisations.

ID Requirement Justification

N1 The platform should support multiple

concurrent users performing actions

such as browsing products, managing

profiles, and completing transactions.

To provide a seamless shopping experience even

during peak usage, the system must handle

many users at once without significant perfor-

mance degradation.

N2 Users should experience minimal de-

lay between logging in and interacting

with the platform’s features.

Quick access to browsing, checkout, and profile

management is important to ensure user satis-

faction and reduce bounce rates.

N3 The platform should be compatible

with major browsers such as Google

Chrome, Mozilla Firefox, Safari, and

Microsoft Edge.

Browser compatibility increases accessibility, en-

suring that users across different devices and

preferences can access the service without tech-

nical barriers.

N4 The platform’s interface should be

clean, simple, and easy to navigate.

A user-friendly design ensures inclusivity and

encourages engagement from users of all techni-

cal abilities, supporting effective shopping and

profile management.

N5 Sensitive user data such as passwords

and payment information must be se-

curely encrypted.

Encryption safeguards users’ privacy and secu-

rity, building trust in the platform and comply-

ing with data protection regulations.

N6 Storage and compute resources should

be scalable to accommodate growing

user bases and inventory expansion.

Initially, basic cloud resources will be sufficient,

but future deployments must plan for scalable

solutions to meet demand without downtime.

N7 The platform should achieve high

availability and fault tolerance to

avoid critical service interruptions.

Ensuring continuous availability strengthens

user trust and supports uninterrupted e-

commerce transactions, particularly during

peak shopping periods.

Table 3: Non-Functional Requirements

5

COM3014 Coursework Report Group UG-3 — Vendur

2 Architecture

2.1 Overview

The Vendur application was designed as a modular, cloud-native web platform with a Next.js fron-

tend, and a backend composed of five microservices, each with their own PostgreSQL database.

Each microservice provides one key functionality which can be independently scaled, tested, and

deployed. The system uses Docker to containerise and deploy microservices across different envi-

ronments, and a Git repository for version control and to manage parallel development efficiently

across the team.

2.2 Microservices

Five microservices comprise the Vendur platform:

• Catalogue - Manages product listings, categories, discounts and filtering options

• Payment service – Handles secure payment processing, basket management, and order con-

firmation.

• Analytics service – Provides sales, product, and user activity insights to organisations.

• Organisation Management service – Allows organisations to manage their product listings

and request verification.

• Admin service – Enables administrators to verify organisations, oversee reviews, and perform

CRUD operations on organisational data.

By separating these services, our team was able to isolate faults, independently scale bottleneck

services, and introduce new features without impacting existing functionality. This promoted scal-

ability, flexibility, and maintainability in our design.

The microservices are connected as follows:

Figure 1: Microservices Overview

6

COM3014 Coursework Report Group UG-3 — Vendur

2.3 Database and Backend

Each microservice is paired with its own PostgreSQL database instance, each of which is managed

via Supabase. This ensures that each microservice only has access to the data necessary for its own

function, improving security through data isolation, as one data breach will not compromise the

entire system. The backend is built using Express.js [10] with TypeScript [26], providing a robust

and strictly typed environment to improve code consistency and mitigate runtime errors.

Figure 2: API Flows

The databases had the following architectures:

Figure 3: Catalogue Entity-Relationship Diagram

7

COM3014 Coursework Report Group UG-3 — Vendur

The catalogue database is centred around the items table. The reviews, recommendations and

stock tables each contain a foreign key of item id to link each object to the item they are related

to. The browsing history table contains item ids attribute, which is an array containing one or

more item id objects, and one item can have many browsing history objects, creating a many-

to-many relationship between them.

Figure 4: Organisation Management Entity-Relationship Diagram

The organisation management table consists of a table containing all organisations and one con-

taining verification requests. The verification requests table contains a foreign key of org id

to link the organisation that made each request. The request’s current status of the request is

indicated by the active attribute.

Figure 5: Payment Entity-Relationship Diagram

8

COM3014 Coursework Report Group UG-3 — Vendur

The payment table is centred around the orders table. The order groups table keeps track of

which items were ordered together, and the orders table contains a foreign key of group id to link

each ordered item to the group to which it belongs.

The basket table’s items field stores an array of item id objects from the orders table, creating

an implicit relationship between the two.

API Endpoint/Link

Cloudinary [8] https://api.cloudinary.com/v1 1/${process.env.NEXT PUBLI

C CLOUDINARY CLOUD NAME}/image/upload

Stripe.js [22] loadStripe()

StackAuth [2] useUser()

Table 4: API endpoints

2.4 Version Control with Git

Git was used as the version management system to track code changes across the project, as this

has long been industry best practice. The frontend and each microservice had its own branch in the

repository, allowing the team to effectively distribute work and work in parallel without affecting

the main branch. We also opted to use Git’s review system, meaning merge requests required the

approval of two other team members before being integrated. This greatly reduced the likelihood of

introducing errors to the live build. The use of Git also allowed us to revert to previous iterations

of code if needed. An example of this structure is shown below:

9

COM3014 Coursework Report Group UG-3 — Vendur

Figure 6: Example Git Workflow Diagram

2.5 Containerisation with Docker

Docker was used to containerise each microservice, packaging all dependencies within each con-

tainer. This made local development, testing, and deployment consistent across environments and

reduced the risk that the system ran on some machines and not others. We used Docker Compose

to run the services locally, making this efficient during development. Docker supports our modular

design and simplified updates, testing, and scaling of individual services.

2.6 Summary of Benefits

Overall, our architecture ensured that we met the key expectations of cloud-native software. These

include:

• Scalability - Features can be scaled independently based on demand

• Resilience - Failures are isolated to specific services, reducing impact across the system

• Security - Each service has controlled API access and separate database

• Maintainability - Independent development and deployment allows for efficient feature up-

dates and debugging

10

COM3014 Coursework Report Group UG-3 — Vendur

3 Teamwork

3.1 Team Organisation and Communication

From our initial project definition, our team emphasised transparency, consistency, and even contri-

bution. The main means of ensuring this came in holding weekly in-person lab meetings to discuss

and implement our respective features together, supporting each another where needed. Between

these meetings, we communicated multiple times per week via WhatsApp and Discord chats to

ensure an alignment in vision for the various features being worked on, in addition to reporting

and resolving issues, discussing ongoing progress and assigning tasks to group members.

We used Trello to manage assigned tasks and monitor progress, which allowed us to visually organise

our workflow into clearly defined states such as ”To Do,” ”In Progress,” ”Under Review” and

”Complete.” We created a card for each individual task, feature, or fix, and these were assigned to

team members with deadlines and labels.

Figure 7: Vendur’s Trello Board

This was ideal for our workflow, as it allowed us to explicitly view what tasks were being worked

on by which team members and how they were progressing with each. This also helped us deploy

support where appropriate, if a specific task were to require more manpower. It also meant that

our workflow was centralised and readily visible to every member of the team, without the need

for all members of the team to be online at one time. Team members could leave comments on

tasks, attach resources, and move cards into the appropriate state, and Trello notifications would be

sent to all team members when changes were made, furthering the asynchronous workflow between

members, along with visibility and access for the entire team.

11

COM3014 Coursework Report Group UG-3 — Vendur

3.2 Work Distribution

At the start of the project, each team member was assigned ownership of one microservice based on

their interests and skills, along with one secondary service based on expertise and support needed.

These secondary tasks also included leading the frontend and shared backend infrastructure, and

leading project documentation, though all group members contributed to these segments at some

stage. These tasks were assigned as follows:

Team Member Responsibility

Alexander Kyriacou Organisation Management microservice, project documenta-

tion lead

Aran Jannson Frontend application, Docker containerisation support, Host-

ing, general microservice backend development

William Bang Payment microservice, data modelling and logic development

Thomas Rouse Catalogue microservice, frontend integration support, general

backend development

Noah Esguerra Analytics microservice, statistical logic and graphing

Ismaeel Anjum Admin microservice, backend integration and API linking

Table 5: Team Members and Responsibilities

3.3 Conflict Management

Although our team worked well throughout the project, we recognised early that in a group project

like ours, with differing ideas, priorities, and working styles, conflict was inevitable at some stage.

To mitigate the impact of this, we adopted several proactive methods:

• Establishing Clear Expectations Before any development took place, we created and

signed two team contracts outlining our goals for the Vendur development, as well as the

above-stated plans for communication, attendance, deadlines, and collaboration. Each team

member signed these contracts, solidifying that we all agreed to these policies and would

adhere to them.

• Respectful and Open Commnunication We made sure to foster an environment in which

everyone felt comfortable expressing their thoughts and concerns. WhatsApp became our

main platform for ongoing discussion, with technical collaboration taking place in the Discord

server, and any member of the team could make suggestions, ask for support, or challenge

decisions constructively. The chats had a professional, but informal and friendly tone to ensure

that team members did felt comfortable coming forward with issues or concerns, without

becoming frustrated with each other.

12

COM3014 Coursework Report Group UG-3 — Vendur

• Active Listening and Issue-Driven Dialogue During meetings, we encouraged active

listening by allowing each person to present their point of view without interruption. We

made a point of focusing on issues rather than individuals, preventing blame being placed on

members, and keeping conversations productive and moving forward.

• Consensus-Based Decision Making In situations with multiple viable solutions, we dis-

cussed the positives and trade-offs of each approach as a group before making a decision based

on a group poll. This process ensured that all group members felt a level of ownership over

the direction of the project.

• Resolving Issues Diplomatically If team members temporarily missed an assigned task

due to external circumstances, part of their workload would be reassigned for a period of time.

We referred to the expectations established and agreed upon, and had respectful conversations

to resolve these issues without escalation.

13

COM3014 Coursework Report Group UG-3 — Vendur

4 Implementation

4.1 Use of Cloud-Native Software Development Processes

4.1.1 Microservices

The Vendur platform adopted a microservice architecture to support the modular, scalable, and

fault-tolerant design principles of cloud-native software. Each microservice was containerised with

Docker and developed as an isolated, self-contained component that could then be implemented into

the main system. This ensured efficient deployment and testing while reducing the risk of errors

in the broader system when debugging or introducing features to individual services. Services

communicate through RESTful HTTP API routes.

Figure 8: Microservices on Github

Our technology stack was selected to balance effective implementation of our design, familiarity

with the team, and industry best practices. With these goals in mind, we opted to implement

the backend using Express.js, built on Node.js, with TypeScript [26]. Each microservice had its

own PostgreSQL database to ensure complete data isolation and resilience, and these were managed

using Supabase CLI [23]. The data analytics features also used this technology to fetch the required

data. The frontend was built with Next.js 15 [30], which is itself routed from React 19.

We used shadcn/ui to implement a responsive carousel component on the homepage [20]. This

allowed us to showcase featured products with minimal configuration, using Tailwind-compatible

styling out of the box.

14

COM3014 Coursework Report Group UG-3 — Vendur

Figure 9: The Homepage for the Vendur Application

We also provided a ’spotlight’ page with featured verified organisation pages. This gives SMBs that

have been reviewed by the admin team an opportunity to boost customer engagement and sales,

as well as garner a positive reputation.

Figure 10: The Vendur Spotlight

For the frontend of the application, Stack Auth [2] was employed to handle authentication. Stack

Auth provides an open-source solution with a robust and developer-friendly API, enabling integra-

tion with Next.js. Its flexibility and ease of implementation made it a good choice for managing

user sessions and securing access to frontend components.

Stack Auth also contains a ’teams’ system, which was used to implement organisation accounts.

Organisation users belong to a Stack Auth team, and user accounts are given access to the or-

ganisation panel for the team to which they belong. The admin team was also implemented this

way.

15

COM3014 Coursework Report Group UG-3 — Vendur

We used Nginx [11] as a reverse proxy to route incoming HTTP requests to our Next.js frontend

services. We also made use of PM2 [17] to ensure that the server was consistently running, and

handle any crashes. Nginx handles static file serving, SSL termination, and load balancing, while

PM2 ensures availability of our backend by managing application processes, enabling automatic

restarts on failure, and supporting zero-downtime reloads.

These microservices are broken down as follows:

1. Catalogue Microservice This service manages all product-related data. Sellers can add

new items, set prices, apply percentage-based discounts, and manage stock levels. Customers can

retrieve all listings, or perform targeted searches using query parameters such as category, price

range, discount availability, or keyword. Filtering is performed server-side for performance. This

service also exposes endpoints to fetch ’most popular’ items, supporting integrations with the

analytics service. Items are linked to verified organisations via a foreign key relationship. Products

listed by verified organisations are more heavily weighted in the listing algorithm when filtering by

popularity.

Items are stored in the database with fields such as title, description, price, discount percentage,

and stock count. Each item is linked to a specific organisation through a foreign key, allowing

sellers to manage their own listings independently. Sellers can apply discounts to their products,

which are reflected in the price calculations on the frontend. Stock is tracked per item and is

decremented upon successful checkout via the Payment microservice. These mechanisms ensure

real-time inventory management and accurate pricing during the customer shopping experience.

Customers who are logged in can leave reviews for individual items. Each review consists of a star

rating from 1 to 5 and an optional comment field to provide feedback. Reviews are tied to specific

items and stored in a related table using the item’s ID as a foreign key.

2. Payment Microservice The Payment microservice is intended to implement requirement

F3, a secure payment processing system. The payment microservice has many features that en-

sure a secure user experience with robust techniques during implementation, including the use of

secure APIs, and sensible authorisation and authentication. The following sections will describe

how a functional payment system, yet a user-friendly environment, was implemented to satisfy

requirement F3.

Unfortunately, we had a problem with CORS (cross-origin site request) settings that interfered

with cookies on the hosted website between sites, which is a security measure to prevent cross-site

scripting attacks. Therefore, the intended solution was not used. Instead, we opted to simulate the

behaviour of cookies using a table.

After the user has added items to their basket, they can choose to check out. The user can choose

from a selection of payment methods, Klarna [1], debit card, to name a few. More details would

need to be provided by the user to ensure reliable delivery, specifically delivery and billing addresses.

Until payment confirmation, items are held in their basket, and after confirmation, they will be

16

COM3014 Coursework Report Group UG-3 — Vendur

notified of their payment and shown their order number and intended delivery address.

Initially, cookies were implemented to store the user’s current state, even in the event of website

termination, and to fluidly manage data across multiple users concurrently with cookie-parser

[15]. Although cookie-parser offers complete customisation of secure sending using options such as

httpOnly: true and secure: true, it mitigates data interception.

Figure 11: Payment flow

3. Organisation Management Microservice

This service manages all organisation-specific data and functionality. It allows sellers (organisa-

tions) to register, view, and edit their profiles, request verification, and manage their product

listings. Each organisation is uniquely identified and linked to its corresponding products via a

foreign key relationship. The service ensures that organisations can manage their storefronts inde-

pendently through an intuitive dashboard.

Through the organisation dashboard, users can add new products to the Catalogue microservice.

Products are linked to the organisation that created them, ensuring ownership is clearly maintained.

Organisations can also update or delete their existing listings via secure endpoints, with changes

reflected in the catalogue in real-time. The dashboard also provides a hub for relevant data analytics

about organisations’ products and sales.

To enhance credibility and visibility on the platform, organisations can request verification. This

action triggers a submission to the Admin microservice, where the request is reviewed by an ad-

ministrator. Verified organisations are prioritised in popularity-based product sorting, offering

tangible benefits for sellers who meet trustworthiness criteria. Once verified, the organisation’s

status is stored persistently and is displayed on their profile and product listings.

4. Analytics Microservice This service creates clear and convenient graphs to provide essential

17

COM3014 Coursework Report Group UG-3 — Vendur

insight for an online retail platform. The service has been integrated within the organisation

management and admin panels.

For each analytic on each panel, either the Payment service database or the Catalogue service

database is queried, and the result is returned to the microservice. With this, appropriate aggrega-

tion is performed on the data, using the TypeScript record data structure when mapping a singular

attribute to another singular attribute and a TypeScript array when a record is not sufficient.

Once complete, the data is made available to an appropriate Chart.js [7] graph component on the

frontend and illustrated on the necessary page. The Organisation Management analytics required

the org id as a parameter to ensure analytics related to only the given organisation were displayed.

In the organisation management panel, the following statistics were created:

• Average price of a product by category

• Number of listed items per category

• Item-Stock Value per item

• Average rating for each product

• Number of Reviews made per day

• Number of sales per item

• Item Revenue

These analytics provide a respective organisation, given that they are verified and not banned, with

appropriate bar graphs to offer useful metrics for decision making. These can be utilised to provide

an understanding of an organisation’s retail presence.

In the admin panel, the following statistics were created:

• Top 5 most interacted pages

• The average price of an item per category

• The number of items listed per category

• Average value of an order per day

• The total order value per day

• Number of orders per day

• Total Revenue per organisation

• Total number of sales ever

• Total revenue ever

These analytics provide the Vendur admin with appropriate bar graphs and general data for an

insightful perspective into the performance of the entire platform and of every organisation on the

18

COM3014 Coursework Report Group UG-3 — Vendur

website.

5. Admin Microservice

The Admin microservice provides the Vendur team with elevated access and tools to oversee organi-

sation activity, manage verification, moderate items in the catalogue, and maintain system integrity.

This is essential for ensuring trust between buyers and sellers, and supporting the broader modera-

tion and oversight of the Vendur system. The system grants access to users if their user ID belongs

to the IDs in the admin team.

A main responsibility of the Admin microservice is managing the organisation verification process.

When a seller submits a verification request through the Organisation Management service, the

Admin service retrieves and presents this request for review. Administrators can then inspect the

requesting organisation’s profile and listings, and choose to approve or reject the request via a

secure endpoint. Once a decision is made, the verification status is updated in the database and

reflected across the platform. This process ensures that only trustworthy organisations receive

verified status, such as increased visibility and customer confidence.

Administrators are also granted the ability to view and moderate product listings submitted by

organisations. The Admin microservice can fetch items across the platform and inspect their details,

including product descriptions, pricing, category assignments, and associated organisation data. If

a product violates the content guidelines, admins have the authority to modify or remove the listing

directly. This moderation helps uphold the integrity of the marketplace, ensuring that all visible

products meet platform standards and provide a safe, shopping experience.

Lastly, the admin panel contains a section for relevant system-wide analytics. This allows the

Vendur team to keep up to date with system performance and identify areas of the system that are

not being positively engaged with and need to be reviewed.

4.1.2 Github

Throughout the development of Vendur, we used GitHub to manage version control, and support

collaboration across our team. GitHub was an essential part of our cloud-native development

workflow, allowing us to synchronise code contributions, isolate feature development, and preserve

a stable main branch for integration.

Each team member worked within their own dedicated branch, corresponding to either a specific

microservice or the frontend. This branching strategy enabled parallel development and reduced

the risk of merge conflicts. It also allowed for team members to help one another with developing

their microservices in their own branches. Once development was complete and locally tested, each

branch was merged into the frontend branch for integration testing, and into the main branch once

validated.

19

COM3014 Coursework Report Group UG-3 — Vendur

Figure 12: Git Branches

Commits were made regularly, using clear messages to document the purpose of each change.

This improved traceability and made it easier to identify and reverse problematic changes when

needed. GitHub’s visual commit history and pull request interface also helped facilitate peer

reviews, discussion, and team awareness of ongoing work.

Figure 13: Git Commit Examples

Each feature was tested during development to verify route behaviour, request validation, and

expected responses under different input conditions. This ensured that major issues or bugs could

be ironed out as soon as possible before moving on, and minor bugs could be documented to be

fixed at a later date. This continuous integration of tested features allowed us to ensure that the

features we were implementing were working as intended, and informed any improvements that

were needed at the time.

20

COM3014 Coursework Report Group UG-3 — Vendur

Figure 14: Git Commits Throughout the

Project Figure 15: Git Contributors Table

As stated in section 3, coding expectations were different for each team member according to

expertise, and these were balanced with design and documentation responsibilities. In particular,

Alexander Kyriacou possessed the least familiarity and understanding of the web technologies

but the highest proficiency with academic writing and technical graph drawing. To complement

this, they had few coding responsibilities, instead focusing on design of the web application and

spearheading the documentation initiative throughout the project.

4.1.3 Docker

Docker was used to encapsulate each microservice within its own lightweight container. This ap-

proach enabled each microservice to be independently developed, tested, and deployed, without the

risk of interfering with the behaviour or dependencies of other services.

Each of the five backend microservices was containerised using its own Dockerfile. These files define

the base image for the service, Node.js in our case. They also install dependencies, copy the source

code into the container, and specify an entrypoint command to start the service.

21

COM3014 Coursework Report Group UG-3 — Vendur

Figure 16: The Admin Microservice Dockerfile

Once each Docker image was created, Docker Compose was used to orchestrate the system. The

docker-compose.yml file defines how each microservice is connected and configured to run in a

local networked environment.

Figure 17: The Analytics Microservice docker-compose.yml

This setup allows each microservice to be spun up or shut down with a single command:

22

COM3014 Coursework Report Group UG-3 — Vendur

• docker-compose up starts the service and its dependencies

• docker-compose down halts all services and removes the container

Figure 18: docker-compose up on the Admin

Service

Figure 19: docker-compose down on the Admin

Service

4.2 Testing

Platform testing was carefully planned and carried out based on our initial functional requirements

detailed in Table 2. These tests are detailed in the following tables:

Test ID Req. Description Inputs Expected Output Status

TC-F1-01 F1 Add a new product with all

fields populated.

Organisation sub-

mits item with title,

description, price,

category, stock

Item is added to catalogue Pass [A.26, A.27]

TC-F1-02 F1 Update stock and apply dis-

count for existing product.

Organisation edits

stock and applies

discount

Catalogue reflects changes Pass [A.28, A.29, A.30]

TC-F2-01 F2 Search products by keyword. User searches ’shirt’ Matching products re-

turned

Pass [A.31]

TC-F2-02 F2 Filter by category and price. User filters for a cat-

egory

Filtered list meets criteria Pass [A.32]

TC-F6-01 F6 Submit a review with rating

and comment.

User leaves 5-star re-

view

Review shown on product

page

Pass [A.33, A.34]

Table 6: Catalogue Microservice Test Plan

Test ID Req. Description Inputs Expected Output Status

TC-F3-01 F3 View desired items in the bas-

ket.

User adds products

to basket from the

catalogue page

Products added are listed

in the basket, including

quantity

Pass [A.35]

TC-F3-02 F3 Complete checkout flow using

Stripe test card.

Card: 4242 4242

4242 4242

Payment confirmed, order

placed

Pass [A.36, A.36]

Table 7: Payment Microservice Test Plan

23

COM3014 Coursework Report Group UG-3 — Vendur

Test ID Req. Description Inputs Expected Output Status

TC-F4-01 F4 Organisation specific analyt-

ics are retrieved

Organisation views

dashboard

Analytic graphs for just

the organisation are illus-

trated

Pass [A.44, A.45]

TC-F4-02 F4 Admin analytics are retrieved Admin views dash-

board

Analytic graphs for just

admins are illustrated

Pass [A.46, A.47]

Table 8: Analytics Microservice Test Plan

Test ID Req. Description Inputs Expected Output Status

TC-F1-03 F1 Remove a product from the

catalogue.

User deletes an item

from the catalogue

via the admin panel

Item removed from cata-

logue

Pass [A.41, A.43]

TC-F5-01 F5 Approve an organisation veri-

fication request.

Admin reviews and

accepts request

Organisation marked as

verified

Fail (Pass on localhost)

TC-F5-02 F5 Admin edits organisation info. Change description

in dashboard

Info updated successfully Pass [A.42]

Table 9: Admin Microservice Test Plan

Test ID Req. Description Inputs Expected Output Status

TC-F1-04 F1 Manage listed items in the

catalogue.

Organisation deletes

a listed item

Item will be removed from

catalogue and listed items.

Pass [A.38]

TC-F3-04 F1 Manage pending orders. Organisation

changes the sta-

tus of an order

Order status will be update Pass [A.39, A.40]

Table 10: Organisation Management Microservice Test Plan

To test API routes, we used Postman [18]. This allowed us to simulate HTTP requests such as

GET, POST, PUT, and DELETE with custom headers, payloads, and authentication tokens. It

was particularly useful for validating request-response behaviour across our microservices before

frontend integration. Each endpoint was tested for expected functionality, response structure, and

error handling, under both valid and invalid input conditions. Postman’s history and collection

features also enabled efficient retesting during the iterative development and regression testing

phases.

24

COM3014 Coursework Report Group UG-3 — Vendur

Figure 20: An Example Request To Get User Basket

Figure 21: An Example Request to Add a Product to the User Basket

25

COM3014 Coursework Report Group UG-3 — Vendur

Figure 23: An Example Request to Decrease Stock when Added to Basket

Figure 22: An Example Request to Get All Orders

26

COM3014 Coursework Report Group UG-3 — Vendur

5 Learning from Class and from Good Examples

5.1 Class Concepts

One of the most important takeaways from what was covered over the semester was the importance

of the microservice architecture, as well as the value of containerising said microservices using

Docker.

A common challenge presented by large-scale, collaborative coding projects is the inconsistency of

environments between team members. This often leads to issues such as build errors or feature bugs

on some machines, while others presented no issues. This can also cause application errors for end

users. Using Docker enabled us to efficiently package each microservice with all its dependencies,

ensuring that they will all reliably run across any environment.

Additionally, containerisation supports modularity and isolation, both key concepts in web devel-

opment, allowing features to be independently developed, tested, deployed and maintained. This

makes the system more resilient, as a failure in one service will not compromise the entire system.

5.2 Amazon

Amazon [3] is another retail platform that adopted a microservice architecture [25], albeit on a

much larger scale, with hundreds of independent services available. This was a great inspiration

for the highly scalable and isolated microservice architecture which would make up Vendur.

Vendur’s backend mimics Amazon’s in its structure, with each microservice being independently

developed and deployed, internally connected through API routes. This is what leads to the highly

scalable and resilient architecture for which Amazon is widely recognised.

Another key point of inspiration was Amazon’s highly analytics-driven decision making [13]. The

Amazon platform makes use of large datasets to optimise product listings, pricing, and recom-

mendations. Although not on the same scale, this inspired our Analytics microservice to provide

real-time business insights to companies using Vendur. This was particularly important to provide

for SMBs which may lack in-house data analytics tools.

5.3 Shopify

Shopify [21] offers a ready-to-use e-commerce platform that is targeted at smaller businesses, over-

lapping with the target audience for Vendur. This inspired our decision to focus on rapid user

onboarding with an emphasis on seller autonomy, as well as influencing the design of the organisa-

tion management microservice and dashboard.

Shopify presents merchants with an intuitive dashboard with access to analytics, product manage-

ment, and customer interaction, so we designed Vendur’s organisation management system with

these concepts in mind. This inspired the modular structure of the microservice, which enables

27

COM3014 Coursework Report Group UG-3 — Vendur

businesses to list products and manage their profiles, all independently of other backend functional-

ity. Our system also similarly supports organisation verification by the administration team, partly

inspired by Shopify’s tiers and merchant status.

5.4 eBay

eBay [9] has long had a significant presence in the e-commerce space, leading to the evolution of

an efficient system of managing user-generated content in extremely high volumes. This provided

a lot of inspiration for Vendur’s own item search and filtering capabilities present in the catalogue

microservice. While on a smaller scale, our database schema is designed to accommodate filtering

by product categories, directly inspired by eBay’s layered search capabilities.

The Vendur user experience was also greatly informed by eBay’s use of progressive disclosure in

the UI [29]. This concept helped us minimise interface clutter in our frontend design, as well

as gradually presenting more advanced information (such as filters and reviews) to users when

contextually relevant. This streamlined the user interface so as not to overwhelm new users while

still providing important depth to experienced clients.

Our final takeaway from eBay was the use of real-time elements. Due to the nature of eBay’s bidding

system, consistent real-time updates are crucial, and these influenced how system responses were

handled in Vendur. This included real-time updates such as discounts being applied to products,

and reviews being made. While the Vendur platform does not support live bidding, the focus on

consistent and responsive updates remained relevant to our design.

28

COM3014 Coursework Report Group UG-3 — Vendur

6 Roadmap and Business Model

6.1 Start-up Description

Vendur is a web-based retail platform designed to enable SMBs to effectively compete in the digital

commerce space. The platform offers a range of fully integrated services, including product cata-

logue management, secure payment processing, customer and product analytics, and organisation

account and profile management. Using a microservice-based architecture, Vendur allows organi-

sations to scale operations efficiently, boost customer engagement, and optimise sales performance.

Initially, Vendur will target SMBs within the UK e-commerce market, focusing on retailers with

limited technical resources who need additional support in the online landscape.

6.2 Project Motivation

The motivation behind Vendur is to level the playing field for SMBs in an increasingly competitive

online market. This can help small and often family-owned businesses get a foothold and survive

with the decline in high-street shopping and the increase in convenient online shopping [14].

Figure 24: Rise in Empty High-Street Shops Figure 25: Decline in High-Street Shoppers

6.3 Vision and Future Plans

On a short-term scale, the main plan for Vendur is to fix the initially defined features that did not

materialise in the final hosted version. From our testing, the only failure was in the organisation

verification feature, as organisation accounts cannot currently submit a verification request (but

admins are still capable of verifying an organisation manually). As this issue was not present in

the locally hosted application, this would likely prove to be a small fix; however, the team simply

ran out of time and resources before submission.

29

COM3014 Coursework Report Group UG-3 — Vendur

Our long-term vision for Vendur is to expand its reach to international markets, as well as scale

and develop features to enhance the user experience, enabled by our modular design philosophy.

To support this scale, we plan to migrate the platform to cloud services such as AWS or Google

Cloud, leveraging the robust infrastructure already in place for scalable computing and global

deployment.

We also aim to draw inspiration from industry leaders such as Amazon [3], eBay [9], and Shopify [21]

in refining the user experience. This includes introducing frictionless onboarding [28] to minimise

the amount of information required to create an account, as well as offering one-click check out and

integrated shipping options. This would eventually lead to the Vendur company having its own

warehouses and storage in many locations, and hiring drivers to deliver some products to customers.

This scale will of course require monetisation, so we will evaluate income strategies which prioritise

user growth. For example, we may offer a tiered membership model; we can allow users to have

a limited free experience with basic e-commerce features, and provide advanced features such as

more in-depth analytics or dedicated customer service behind an optional monthly paywall. This

allows small businesses to access essential tools, while offering growing or mid-sized organisations

enhanced capabilities. Another source of monetisation is advertising; however, we must ensure that

advertisements are relatively nonintrusive so as not to negatively impact the user experience.

6.4 Target Market Group (TMG)

Vendur targets SMBs in the retail sector, particularly with limited technical capacity or online

presence. Demographically, the platform appeals to business owners and operators of all ages but

will likely be emphasised to relatively young business owners who are trying to find their way and

build a presence in the online world. Businesses in almost any retail segment can make use of

Vendur, from upmarket fashion boutiques to niche artisanal souvenir shops, so long as items can

be packaged and delivered.

6.5 Competitive Analysis

Vendur competes with all-in-one e-commerce solutions such as Shopify, and marketplace platforms

such as Amazon and Etsy. However, Vendur’s tailored focus on SMBs is what sets the platform

apart.

Unlike major competitors which offer rigid packages, Vendur provides an integrated solution that

is ready-to-use and designed specifically for smaller retailers. The modular back-end architecture

allows the Vendur team to deliver high-quality services as well as scaling and developing features

which will most refine the experience for these companies.

In addition, Vendur stands out with its inbuilt analytics, organisation management tools, and

flexible customer interaction support typically only available to larger enterprises. By focusing

exclusively on SMBs, Vendur delivers an effective and affordable solution for getting started in the

30

COM3014 Coursework Report Group UG-3 — Vendur

e-commerce space.

6.6 Key Stakeholders

Vendur’s primary users are small and medium-sized retail businesses. These organisations will use

the platform to manage product listings, process payments, analyse customer data, and engage

with their audiences. The platform is designed to meet the needs of SMBs that often lack large

technical teams, providing them with an affordable and accessible solution to compete in the online

market.

End customers are also critical stakeholders. Your experience browsing, purchasing, and interacting

with Vendur businesses directly affects the reputation and commercial success of the platform.

Ensuring secure transactions, fast performance, and user-friendly interfaces is essential to meet

their needs.

The development team has played and will continue to play a key role in building, maintaining, and

continuously improving the Vendur platform. This includes implementing new features, fixing bugs

and enhancing system performance. Keeping the development team aligned is vital for long-term

success.

Finally, investors and strategic partners provide the financial and operational backing to scale the

business. They may offer capital, cloud services, or business expertise, helping Vendur expand into

new markets and improve its product offerings. Engaging these stakeholders with a clear growth

strategy will be crucial to secure the resources needed for expansion.

6.7 Ethical and Legal Considerations

During development, we assumed that customer and organisation data used would remain within

a controlled test environment. Currently, the application uses placeholder data and credentials,

meaning no personally identifiable information is stored or processed. However, if Vendur were to

be implemented in a real-world setting with live users, strict adherence to the UK General Data

Protection Regulation (GDPR) [12]and the Data Protection Act 2018 [27] would be legally required.

If deployed commercially, Vendur would collect and process user data such as names, organisation

details, email addresses, product information, and customer payment details. In this case, it would

be essential to implement transparent privacy policies, obtain informed user consent for data col-

lection and storage, and offer opt-out mechanisms where appropriate. In particular, organisations

would need to be notified about how their profiles and public responses are displayed on the plat-

form, and customers would need to agree to terms and conditions that outline the visibility of their

reviews.

All passwords and sensitive login information are currently hashed using industry-standard encryp-

tion methods by the authorisation system. This provides sufficient security to ensure that user

credentials are not susceptible to being leaked in the event of a cyber attack. Data isolation with

31

COM3014 Coursework Report Group UG-3 — Vendur

separate databases for microservices further reinforces this.

Integration with third-party payment providers, such as Stripe, require compliance with PCI DSS

(Payment Card Industry Data Security Standard) to ensure that financial data is handled se-

curely [16]. Before deployment, Vendur would also need to verify that any partner services or

libraries used comply with relevant security and privacy standards.

Ethically, the platform aims to empower small and medium-sized businesses by offering fair access

to e-commerce infrastructure. Sellers are treated equally, with verification serving only as a means

to prioritise trust, rather than exclude participation. Reviews are publicly visible, but tied only to

product IDs and not customer names or accounts, supporting transparency while avoiding personal

exposure.

Throughout the project, we adhered to the BCS Code of Conduct, particularly in regard to user

privacy, fair treatment, and responsible data handling [4]. As part of our commitment to ethical

software development, we ensured that all testing was conducted with placeholder data, with no

real customers involved, and no actual commerce occurred. Should the project be deployed in the

future, a full Data Protection Impact Assessment (DPIA) would need to be conducted before real

data collection begins [5].

7 Conclusion

Overall, the Vendur project demonstrates a strong approach to building a scalable, cloud-native

retail platform. Through the use of microservices, containerisation with Docker, secure payment

processing, and an intuitive frontend, the system addresses our goals of supporting small and

medium-sized businesses. Effective collaboration, testing practices, and adherence to cloud-native

principles have ensured a maintainable and extensible codebase, providing the project with a solid

foundation for future enhancements.

32

References

[1] Klarna - Compare prices and pay in 3 methods — klarna.com. https://www.klarna.com/uk/.

[2] Stack Auth — the open-source Auth0 & Clerk alternative — stack-auth.com. URL: https:

//stack-auth.com/.

[3] Amazon. Amazon. URL: https://www.amazon.co.uk/?tag=admpdesktopuk-21&ref=pd_sl_

9555ef09d69d14d19c77d608afd2267c21d858116e164eb4f850b79e.

[4] British Computer Society (BCS). Bcs code of conduct. URL: https://www.bcs.org/

membership-and-registrations/become-a-member/bcs-code-of-conduct/.

[5] British Computer Society (BCS). Data protection impact assessments (dpias).

URL: https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/

accountability-and-governance/data-protection-impact-assessments-dpias/.

[6] Burst by Shopify. Burst - free stock photos for websites and commercial use. URL: https:

//www.shopify.com/stock-photos.

[7] Chart.js Dev Team. Chart.js. URL: https://www.chartjs.org/docs/latest/.

[8] Cloudinary. Cloudinary — Media API for Images, Video and Rich Media. URL: https:

//cloudinary.com/.

[9] eBay. ebay. URL: https://www.ebay.co.uk/e/coupon-offers/generic?mkcid=1&mkrid=

710-53481-19255-0&siteid=3&campid=5337314663&customid=pcgbebayebaysd&toolid=

10001&mkevt=1.

[10] Express.js. Express.js documentation. URL: https://expressjs.com.

[11] F5, Inc. Welcome to NGINX — F5. URL: https://www.f5.com/go/product/

welcome-to-nginx.

[12] Information Commissioner’s Office (ICO). Uk gdpr overview. URL:

https://ico.org.uk/for-organisations/data-protection-and-the-eu/

data-protection-and-the-eu-in-detail/the-uk-gdpr/.

[13] Michael Ampofo. How amazon uses data science and analytics to

drive e-commerce success. URL: https://www.linkedin.com/pulse/

how-amazon-uses-data-science-analytics-drive-success-michael-ampofo/.

[14] BBC News. High street: How many uk shops have closed? URL: https://www.bbc.co.uk/

news/business-49349703.

[15] npm. cookie-parser documentation. URL: https://www.npmjs.com/package/

cookie-parser.

[16] PCI Security Standards Council. Payment card industry data security standard. URL: https:

https://www.klarna.com/uk/
https://stack-auth.com/
https://stack-auth.com/
https://www.amazon.co.uk/?tag=admpdesktopuk-21&ref=pd_sl_9555ef09d69d14d19c77d608afd2267c21d858116e164eb4f850b79e
https://www.amazon.co.uk/?tag=admpdesktopuk-21&ref=pd_sl_9555ef09d69d14d19c77d608afd2267c21d858116e164eb4f850b79e
https://www.bcs.org/membership-and-registrations/become-a-member/bcs-code-of-conduct/
https://www.bcs.org/membership-and-registrations/become-a-member/bcs-code-of-conduct/
https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/accountability-and-governance/data-protection-impact-assessments-dpias/
https://ico.org.uk/for-organisations/uk-gdpr-guidance-and-resources/accountability-and-governance/data-protection-impact-assessments-dpias/
https://www.shopify.com/stock-photos
https://www.shopify.com/stock-photos
https://www.chartjs.org/docs/latest/
https://cloudinary.com/
https://cloudinary.com/
https://www.ebay.co.uk/e/coupon-offers/generic?mkcid=1&mkrid=710-53481-19255-0&siteid=3&campid=5337314663&customid=pcgbebayebaysd&toolid=10001&mkevt=1
https://www.ebay.co.uk/e/coupon-offers/generic?mkcid=1&mkrid=710-53481-19255-0&siteid=3&campid=5337314663&customid=pcgbebayebaysd&toolid=10001&mkevt=1
https://www.ebay.co.uk/e/coupon-offers/generic?mkcid=1&mkrid=710-53481-19255-0&siteid=3&campid=5337314663&customid=pcgbebayebaysd&toolid=10001&mkevt=1
https://expressjs.com
https://www.f5.com/go/product/welcome-to-nginx
https://www.f5.com/go/product/welcome-to-nginx
https://ico.org.uk/for-organisations/data-protection-and-the-eu/data-protection-and-the-eu-in-detail/the-uk-gdpr/
https://ico.org.uk/for-organisations/data-protection-and-the-eu/data-protection-and-the-eu-in-detail/the-uk-gdpr/
https://www.linkedin.com/pulse/how-amazon-uses-data-science-analytics-drive-success-michael-ampofo/
https://www.linkedin.com/pulse/how-amazon-uses-data-science-analytics-drive-success-michael-ampofo/
https://www.bbc.co.uk/news/business-49349703
https://www.bbc.co.uk/news/business-49349703
https://www.npmjs.com/package/cookie-parser
https://www.npmjs.com/package/cookie-parser
https://docsprv.pcisecuritystandards.org/PCI%20DSS/Standard/PCI-DSS-v4_0_1.pdf

//docsprv.pcisecuritystandards.org/PCI%20DSS/Standard/PCI-DSS-v4_0_1.pdf.

[17] PM2. PM2 — Production Process Manager for Node.js Apps. URL: https://pm2.io/.

[18] Postman Dev Team. Postman. URL: https://www.postman.com.

[19] Russell Heimlich. Dynamic dummy image generator. URL: https://www.shopify.com/

stock-photos.

[20] shadcn/ui. Carousel — Shadcn UI Docs. URL: https://ui.shadcn.com/docs/components/

carousel.

[21] Shopify. Shopify. URL: https://www.shopify.com/uk/free-trial?term=shopify&

adid=565751946441&campaignid=15439902872&branded_enterprise=1&BOID=brand&

utm_medium=cpc&utm_source=google&gad_source=1&gad_campaignid=15439902872&

gclid=Cj0KCQjw0LDBBhCnARIsAMpYlAqLXV-X3NiW2ar61v5v3nXwkXb6dM2c1ZnWccVRzlDpbv_

NxSrzNXQaApk-EALw_wcB.

[22] Stripe.js. Stripe.js documentation. URL: https://docs.stripe.com/js.

[23] Supabase. Supabase CLI — Supabase Docs — supabase.com. URL: https:

//supabase.com/docs/guides/local-development/cli/getting-started?queryGroups=

platform&platform=linux&queryGroups=access-method&access-method=kong.

[24] Tailwind Labs. Tailwind CSS — Rapidly build modern websites without ever leaving your

HTML. URL: https://tailwindcss.com/.

[25] The New Stack. What led amazon to its own microservices architecture. URL: https://

thenewstack.io/led-amazon-microservices-architecture/.

[26] TypeScript. Typescript. URL: https://www.typescriptlang.org.

[27] UK Government. Data protection act 2018. URL: https://www.legislation.gov.uk/ukpga/

2018/12/contents.

[28] Userpilot. Frictionless onboarding. URL: https://userpilot.com/blog/

frictionless-customer-onboarding/.

[29] UXPin. What is progressive disclosure? show hide the right information. URL: https:

//www.uxpin.com/studio/blog/what-is-progressive-disclosure//.

[30] Vercel. Next.js — The React Framework for the Web. URL: https://nextjs.org/.

https://docsprv.pcisecuritystandards.org/PCI%20DSS/Standard/PCI-DSS-v4_0_1.pdf
https://docsprv.pcisecuritystandards.org/PCI%20DSS/Standard/PCI-DSS-v4_0_1.pdf
https://docsprv.pcisecuritystandards.org/PCI%20DSS/Standard/PCI-DSS-v4_0_1.pdf
https://pm2.io/
https://www.postman.com
https://www.shopify.com/stock-photos
https://www.shopify.com/stock-photos
https://ui.shadcn.com/docs/components/carousel
https://ui.shadcn.com/docs/components/carousel
https://www.shopify.com/uk/free-trial?term=shopify&adid=565751946441&campaignid=15439902872&branded_enterprise=1&BOID=brand&utm_medium=cpc&utm_source=google&gad_source=1&gad_campaignid=15439902872&gclid=Cj0KCQjw0LDBBhCnARIsAMpYlAqLXV-X3NiW2ar61v5v3nXwkXb6dM2c1ZnWccVRzlDpbv_NxSrzNXQaApk-EALw_wcB
https://www.shopify.com/uk/free-trial?term=shopify&adid=565751946441&campaignid=15439902872&branded_enterprise=1&BOID=brand&utm_medium=cpc&utm_source=google&gad_source=1&gad_campaignid=15439902872&gclid=Cj0KCQjw0LDBBhCnARIsAMpYlAqLXV-X3NiW2ar61v5v3nXwkXb6dM2c1ZnWccVRzlDpbv_NxSrzNXQaApk-EALw_wcB
https://www.shopify.com/uk/free-trial?term=shopify&adid=565751946441&campaignid=15439902872&branded_enterprise=1&BOID=brand&utm_medium=cpc&utm_source=google&gad_source=1&gad_campaignid=15439902872&gclid=Cj0KCQjw0LDBBhCnARIsAMpYlAqLXV-X3NiW2ar61v5v3nXwkXb6dM2c1ZnWccVRzlDpbv_NxSrzNXQaApk-EALw_wcB
https://www.shopify.com/uk/free-trial?term=shopify&adid=565751946441&campaignid=15439902872&branded_enterprise=1&BOID=brand&utm_medium=cpc&utm_source=google&gad_source=1&gad_campaignid=15439902872&gclid=Cj0KCQjw0LDBBhCnARIsAMpYlAqLXV-X3NiW2ar61v5v3nXwkXb6dM2c1ZnWccVRzlDpbv_NxSrzNXQaApk-EALw_wcB
https://www.shopify.com/uk/free-trial?term=shopify&adid=565751946441&campaignid=15439902872&branded_enterprise=1&BOID=brand&utm_medium=cpc&utm_source=google&gad_source=1&gad_campaignid=15439902872&gclid=Cj0KCQjw0LDBBhCnARIsAMpYlAqLXV-X3NiW2ar61v5v3nXwkXb6dM2c1ZnWccVRzlDpbv_NxSrzNXQaApk-EALw_wcB
https://docs.stripe.com/js
https://supabase.com/docs/guides/local-development/cli/getting-started?queryGroups=platform&platform=linux&queryGroups=access-method&access-method=kong
https://supabase.com/docs/guides/local-development/cli/getting-started?queryGroups=platform&platform=linux&queryGroups=access-method&access-method=kong
https://supabase.com/docs/guides/local-development/cli/getting-started?queryGroups=platform&platform=linux&queryGroups=access-method&access-method=kong
https://tailwindcss.com/
https://thenewstack.io/led-amazon-microservices-architecture/
https://thenewstack.io/led-amazon-microservices-architecture/
https://www.typescriptlang.org
https://www.legislation.gov.uk/ukpga/2018/12/contents
https://www.legislation.gov.uk/ukpga/2018/12/contents
https://userpilot.com/blog/frictionless-customer-onboarding/
https://userpilot.com/blog/frictionless-customer-onboarding/
https://www.uxpin.com/studio/blog/what-is-progressive-disclosure//
https://www.uxpin.com/studio/blog/what-is-progressive-disclosure//
https://nextjs.org/

A Testing Evidence

Figure A.26: Add Product Form (TC-F1-01)

Figure A.27: Item Added to Catalogue (TC-F1-01)

Figure A.28: Editing a Products Stock (TC-F1-02)

Figure A.29: Adding a Discount to a Product (TC-F1-02)

Figure A.30: Discount Added to the Product (TC-F1-02)

Figure A.31: Keyword Search (TC-F2-01)

Figure A.32: Category Filtering (TC-F2-02)

Figure A.33: Product Review Form (TC-F6-01)

Figure A.34: Product Review Example (TC-F6-01)

Figure A.35: Items in the Basket (TC-F3-01)

Figure A.36: Stripe Checkout (TC-F3-02)

Figure A.37: Order Success (TC-F3-02)

Figure A.38: Deleting an Item (TC-F1-04)

Figure A.39: Setting an Order to Complete (TC-F3-04)

Figure A.40: A Cancelled Order

Figure A.41: Deleting a Product from the Admin Panel (TC-F1-03)

Figure A.42: The Edit Organisation Form (TC-F5-02)

Figure A.43: Product Removed by Admin (TC-F1-03)

Figure A.44: Organisation Analytics (TC-F4-01)

Figure A.45: Organisation Analytics (TC-F4-01)

Figure A.46: Admin Analytics (TC-F4-02)

Figure A.47: Admin Analytics (TC-F4-02)

	Requirements and Problem Statement
	Problem Statement
	Requirements

	Architecture
	Overview
	Microservices
	Database and Backend
	Version Control with Git
	Containerisation with Docker
	Summary of Benefits

	Teamwork
	Team Organisation and Communication
	Work Distribution
	Conflict Management

	Implementation
	Use of Cloud-Native Software Development Processes
	Microservices
	Github
	Docker

	Testing

	Learning from Class and from Good Examples
	Class Concepts
	Amazon
	Shopify
	eBay

	Roadmap and Business Model
	Start-up Description
	Project Motivation
	Vision and Future Plans
	Target Market Group (TMG)
	Competitive Analysis
	Key Stakeholders
	Ethical and Legal Considerations

	Conclusion
	Testing Evidence

